
SimEvents®

User's Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® User's Guide
© COPYRIGHT 2005–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)

v

Contents

Working with Entities
1

Entity Types . 1-2

Events and Event Actions . 1-4
Create Event Actions . 1-4

Generate Entities When Events Occur 1-7
Generate Entity When First Entity is Destroyed 1-7
Generate Event-Based Entities Using Data Sets 1-9

Run Computations on Events . 1-10

Specify Intergeneration Times for Entities 1-11
Determine Intergeneration Time . 1-11

Generate Multiple Entities at Time Zero 1-17

Count Simultaneous Departures from a Server 1-20

Working with Entity Attributes . 1-23
Attach Attributes . 1-23
Set Attributes . 1-23

Manipulate Entity Attributes . 1-26
Write Functions to Manipulate Attributes 1-26

Inspect Structures of Entities . 1-30
Display Entity Types . 1-30
Inspect Entities at Run Time . 1-31

Combine Entities . 1-33

vi Contents

Replicate Entities on Multiple Paths 1-34
Modeling Notes . 1-34

Attribute Value Support . 1-35

Modeling Queues and Servers
2

Model Basic Queuing Systems . 2-2
Example of a Logical Queue . 2-2
Vary the Service Time of a Server . 2-2

Sort by Priority . 2-4
Behavior of Priority Mode of Entity Queue Block 2-4
Serve Preferred Customers First . 2-4

Task Preemption in a Multitasking Processor 2-6

Determine Whether a Queue Is Nonempty 2-9

Model Server Failure . 2-10
Server States . 2-10
Use a Gate to Implement a Failure State 2-10

Routing Techniques
3

Role of Paths in SimEvents Models . 3-2
Definition of Entity Paths . 3-2
Implications of Entity Paths . 3-2
Overview Blocks for Designing Paths 3-2

Select Departure Path Using Entity Output Switch 3-5
Role of the Entity Output Switch . 3-5
Sample Use Cases . 3-5
Select the First Available Server . 3-6
Use an Attribute to Select an Output Port 3-6

vii

Select Arrival Path Using Entity Input Switch 3-8
Role of the Input Switch . 3-8
Round-Robin Approach to Choosing Inputs 3-8

Combine Entity Paths . 3-10
Using Entity Input Switch to Combine Paths 3-10
Sequence Simultaneous Pending Arrivals 3-10

Use Messages To Route Entities . 3-12
Control Output Switch with a Message 3-12
Specify an Initial Port Selection . 3-13

Use Attributes to Route Entities . 3-15

Role of Gates in SimEvents Models . 3-16
Overview of Gate Behavior . 3-16
Gate Behavior . 3-16

Enable a Gate for a Time Interval . 3-18
Behavior of Entity Gate Block . 3-18
Control Joint Availability of Two Servers 3-18

Work with Resources
4

Model with Resources . 4-2
Resource Blocks . 4-2
Resource Creation Workflow . 4-2

Set Resource Amount with Attributes 4-4

Visualization, Statistics, and Animation
5

Use Statistics to Understand SimEvents Models 5-2
Statistics for Data Analysis . 5-2
Statistics for Run-Time Control . 5-3

viii Contents

Statistical Tools for Discrete-Event Simulation 5-3

Access Statistics from SimEvents Blocks 5-5
Derive Custom Statistics . 5-6

Visualization and Animation . 5-8

Learning More About SimEvents Software
6

Event Calendar . 6-2

Entity Priorities . 6-3

Livelock Prevention . 6-5
Large Finite Numbers of Simultaneous Events 6-5

Storage and Nonstorage Blocks . 6-6
Storage Blocks . 6-6
Nonstorage Blocks . 6-6

Working with Simulink
7

Exchange Data Between SimEvents and Simulink 7-2

Time-Based Signals and SimEvents Block Transitions 7-3
When Signals Transition . 7-3

Save Simulation Data . 7-4
Behavior of the To Workspace Block 7-4
Send Queue Length to the Workspace 7-4
Data Logging . 7-4

Solvers for Discrete-Event Systems . 7-6
Variable-Step Solvers for Discrete-Event Systems 7-6
Fixed-Step Solvers for Discrete-Event Systems 7-7

ix

SimEvents Support for Simulink Subsystems 7-9
Discrete-Event Blocks in Virtual Subsystems 7-9
Discrete-Event Blocks in Nonvirtual Subsystems 7-9
Discrete-Event Blocks in Variant Subsystems 7-9

Build Discrete-Event Systems Using Charts
8

Discrete-Event Systems Created with Stateflow Charts 8-2
Why Use the Discrete Event Chart . 8-2

How Discrete-Event Charts Differ from Stateflow Charts . . 8-3
Discrete Event Chart Properties . 8-3
Define Message (Entity) Input and Output 8-4
Define Local Messages . 8-4
Specify Message Properties . 8-4

Event Triggering in Discrete-Event Charts 8-5
Event Triggering . 8-5
Message Triggering . 8-5
Temporal Triggering . 8-5

Build Discrete-Event Systems Using System Objects
9

Discrete-Event Systems Created with a System Object 9-2
Why Use the MATLAB Discrete-Event System Block 9-2
Discrete-Event System Objects . 9-3
MATLAB Discrete-Event System And System Objects

Examples . 9-3

Use a MATLAB Discrete-Event System Block 9-5

Implement a Discrete-Event System Object 9-7

Custom Entity Types, Ports, and Storage 9-10
Entity Types . 9-10

x Contents

Custom Entity Ports . 9-11
Custom Entity Storage . 9-11

Work with Events . 9-13
Event Types . 9-13
Event Actions . 9-14
Initialization Events . 9-15
Cancellation of Previously Scheduled Events 9-15
Additional Notes . 9-15

Custom Visualization
10

Interface for Custom Visualization . 10-2
SimulationObserver Class . 10-2
Custom Visualization Workflow . 10-2

Create an Application . 10-4

Use the Observer to Monitor the Model 10-7

Stop Simulation and Disconnect the Model 10-8

Custom Visualization Examples . 10-9
Structure of Example Model . 10-9
Visualize Entities . 10-9

1

Working with Entities

• “Entity Types” on page 1-2
• “Events and Event Actions” on page 1-4
• “Generate Entities When Events Occur” on page 1-7
• “Run Computations on Events” on page 1-10
• “Specify Intergeneration Times for Entities” on page 1-11
• “Generate Multiple Entities at Time Zero” on page 1-17
• “Count Simultaneous Departures from a Server” on page 1-20
• “Working with Entity Attributes” on page 1-23
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Combine Entities” on page 1-33
• “Replicate Entities on Multiple Paths” on page 1-34
• “Attribute Value Support” on page 1-35

1 Working with Entities

1-2

Entity Types

An entity type is the identification tag associated with any block that creates entities
in your model. For the Entity Generator block, you assign a name to the entity type
on the Entity type tab of the generation block. From this block, each new entity
receives this tag. For example, the name of the entity type associated with an Entity
Generator in your model might be Customer. Each entity that originates in that block
receives this entity type. A Composite Entity Creator block also generates new
entities by combining two or more existing entities to form a new composite entity. You
can assign a new entity type name to the entity type (named Combined by default).

Note: The Entity Replicator block also generates new entities by outputting copies
of an incoming entity. However, because the incoming entity already possesses an entity
type, the block does not create new entity types for the copies.

As an entity progresses through your model, its type does not change. Even if the entity
acquires attribute, timeout, or timer data that give it a more complex structure, the
entity type remains the same. Although a Composite Entity Creator block forms
new composite entities with a new entity type, the underlying entity types remain the
same.

By default, each new entity type that SimEvents® creates in your model uses the name
Entity.

The Entity Generator block can generate these entity types:

• Anonymous — Unstructured entity with no name. You can specify only entity priority
and initial data value for anonymous entity types.

• Structured — Structured entity type that you define in this block dialog box. You can
name entities, specify priorities, and specify attributes for the entity in the Define
attributes section of the Entity Generator block. Attributes are data carried by
entities. Creating a structured entity in this tab is a convenient way to create an
entity without having to create an associated bus object in Simulink®.

• Bus object — Entity type that you define using Simulink bus objects. You can name
entities, specify priorities, and specify attributes for the entity. To specify this entity
type, you must have an existing bus object, created in Simulink, and use that bus
object name as the name of the entity type. This bus object:

 Entity Types

1-3

• Must be a valid bus object with one or more bus elements at a single level.
• Cannot contain nested buses.
• Cannot contain variable-size elements. This limitation is also true for entities

registered as bus objects through the Composite Entity Creator block.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |
Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-7
• “Specify Intergeneration Times for Entities” on page 1-11
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Generate Multiple Entities at Time Zero” on page 1-17
• “Count Simultaneous Departures from a Server” on page 1-20
• “Combine Entities” on page 1-33
• “Replicate Entities on Multiple Paths” on page 1-34

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35
• “Bus Objects”

1 Working with Entities

1-4

Events and Event Actions

In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events. You
can create event actions to occur when entities change state, for example, when an entity
exits a block. For a list of blocks and the actions they can have, see “Storage Actions”.

An event calendar tracks upcoming events for a model during a discrete-event
simulation. For more information on the event calendar, see “Event Calendar” on page
6-2

Create Event Actions

Define event actions on the Event actions tab of a block. These are the possible actions
for which you can create events.

Entity Generator Entity Queue Entity Server Entity Terminator Resource Acquirer

Entity
generation

Entity entry to
queue block

Entity entry to
server block

Entity entry to
terminator block

Entity entry to
acquirer block

Entity exit from
block

Entity exit from
block

Service
completion of
entity

N/A Entity exit from
acquirer block

N/A Entity is blocked Entity exit from
block

N/A N/A

N/A N/A Entity is blocked N/A N/A
N/A N/A Entity is

preempted
N/A N/A

In event actions, you can also modify entity attributes (entityName.attributeName),
entity priorities (sys.entity.priority), and entity IDs (sys.entity.id).

The seExampleTankFilling example has two event actions defined, in the Entity
Generator and Entity Server blocks. This example recreates the event action in the
Entity Server block.

1 In a new model, from the SimEvents library, drag the Entity Server and
Simulink Function blocks.

 Events and Event Actions

1-5

2 In the Entity Server block:

• Click the Entity actions tab.
• To create an action on entity entry, click Entry.
• In the Entry action section, type:

startFilling(entity.Capacity);

This command calls the function, startFilling.

The ingoing line to the Entity Server block icon updates with the event action
icon ({...}) indicating that the block defines an event action.

3 In the Simulink Function block:

a In Trigger Port, enter startFilling in the Function name parameter.
b Drag in an Inport block and rename it to cap.
c Rename the u input to capacity and connect it to cap.
d Remove the y output.
e Drag in a MATLAB Function block and an Outport block.
f In the MATLAB Function, enter the code:

function y = toggle()

%#codegen

persistent u

if isempty(u)

 u = -1;

end

if u == -1

 u = 1;

else

 u = -1;

end

1 Working with Entities

1-6

y = u;

g Connect the y output of the MATLAB Function block to the Outport block and
rename the Outport block to reset.

You have now defined the startFilling function for the event action. To optionally
visualize the connection between the Entity Server block and the Simulink
Function block, in the Editor, select Display > Function Connectors.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |
Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-7

More About
• “What Is an Event?”
• “What Is an Entity?”
• “Run Computations on Events” on page 1-10
• “Event Calendar” on page 6-2

 Generate Entities When Events Occur

1-7

Generate Entities When Events Occur

In this section...

“Generate Entity When First Entity is Destroyed” on page 1-7
“Generate Event-Based Entities Using Data Sets” on page 1-9

In addition to time-based entity generation, the Entity Generator block enables you
to generate entities in response to events that occur during the simulation. In event-
based generation, a new entity is generated whenever a message arrives at the input port
of the Entity Generator block.

Event times and the time intervals between pairs of successive entities are not
necessarily predictable in advance.

Generating entities when events occur is appropriate if you want the dynamics of your
model to determine when to generate entities.

Generate Entity When First Entity is Destroyed

To generate an entity when the first entity is destroyed, use two Entity Generator
blocks and a Simulink Function block. The Entity Terminator block calls the
Simulink Function after destroying the first entity.

1 Working with Entities

1-8

In this example, Entity Generator1 generates the first entity. SendMessage contains
the genNext function, which sends a message.

The Entity Terminator block calls the genNext function.

 Generate Entities When Events Occur

1-9

Generate Event-Based Entities Using Data Sets

For an example of an example that uses an Excel® spreadsheet, see Generating and
Initiating Entities.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |
Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Specify Intergeneration Times for Entities” on page 1-11
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Generate Multiple Entities at Time Zero” on page 1-17
• “Count Simultaneous Departures from a Server” on page 1-20
• “Combine Entities” on page 1-33
• “Replicate Entities on Multiple Paths” on page 1-34

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35

1 Working with Entities

1-10

Run Computations on Events

You can run computations on events using event actions by:

• Writing event actions using MATLAB® code that perform computations.
• Using the Simulink Function block to call a function that performs computations.

With either of these methods, you can use attribute-defined data to perform the
computations.

More About
• “What Is an Event?”
• “Event Calendar” on page 6-2

 Specify Intergeneration Times for Entities

1-11

Specify Intergeneration Times for Entities

The intergeneration time is the time interval between successive entities that the block
generates. You can have a generation process that is:

• Periodic
• Sampled from a random distribution or time-based signal
• From custom code

For example, if the block generates entities at T = 50, T = 53, T = 60, and T = 60.1, the
corresponding intergeneration times are 3, 7, and 0.1. After each new entity departs, the
block determines the intergeneration time that represents the interval until the block
generates the next entity.

Determine Intergeneration Time

You configure the Entity Generator block by indicating criteria that it uses to
determine intergeneration times for the entities it creates. You can generate entities:

• From random distribution
• Periodically
• At arbitrary times

Use the dropdown list in the Time source parameter of the Entity Generation block
to determine intergeneration times:

• Dialog

Uses the Period parameter to periodically vary the intergeneration times.
• Signal port

Uses a signal from an external block, such as the Sine wave block, to vary the
intergeneration times.

• MATLAB action

Enables an Intergeneration time action field, in which you enter MATLAB code to
customize the intergeneration times.

1 Working with Entities

1-12

Periodically Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Dialog.

3 In the Statistics tab of the Entity Terminator block, select the Number of
entities arrived check box.

4 Connect these blocks and simulate the model. The period is 1.

5 Vary the period to 8 and simulate the model again. Observe the change in the scope.

 Specify Intergeneration Times for Entities

1-13

Use a Signal to Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, Sine Wave, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to Signal port.

A new signal port appears on the Entity Generator block.
3 In the Statistics tab of the Entity Terminator block, select the Number of

entities arrived check box.
4 Double-click the Sine Wave block. By default, the first value of the Sine Wave

block is 0. To add a constant value to the sine to produce the output of this block,
change the Bias parameter to another value, for example, 1.5.

5 Connect these blocks and simulate the model.

1 Working with Entities

1-14

Upon generating each entity, the Entity Generator block reads the value of
the input signal and uses that value as the time interval until the next entity
generation.

Notice the capital E on the signal line from the Sine Wave block to the Entity
Generator block. This icon indicates the transition from a time-based system to a
discrete-event system.

Customize the Variation of the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source
parameter to MATLAB action.

A new Intergeneration time action field appears on the Entity Generator
block.

3 To customize the intergeneration times for your model, in the Intergeneration
time action field, enter MATLAB code, for example:

dt = rand();

 Specify Intergeneration Times for Entities

1-15

Note: For intergeneration times, you must set the fixed name, dt. You cannot set any
other variable name for this value.

4 In the Statistics tab of the Entity Terminator block, select the Number of
entities arrived check box.

5 Connect these blocks and simulate the model.

See Also
Discrete Event Chart | Entity Server | Entity Generator | Entity Queue |
Entity Replicator | Entity Terminator | MATLAB Discrete Event System

Related Examples
• “Generate Entities When Events Occur” on page 1-7
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Generate Multiple Entities at Time Zero” on page 1-17
• “Count Simultaneous Departures from a Server” on page 1-20
• “Combine Entities” on page 1-33

1 Working with Entities

1-16

• “Replicate Entities on Multiple Paths” on page 1-34

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35

 Generate Multiple Entities at Time Zero

1-17

Generate Multiple Entities at Time Zero

Suppose that you want to:

• Preload a queue or server with entities at the start of the simulation, before you
analyze queueing or processing delays.

• Initialize the capacity of a shared resource before you analyze resource allocation
behavior.

In these scenarios, you can simultaneously generate multiple entities at the start of the
simulation. You can then observe the behavior of only those entities for the remainder of
the simulation.

To generate multiple entities at time 0, use MATLAB code in the Entity Generator
block.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Terminator, and Dashboard Scope blocks.

2 Double-click the Entity Generator block.
3 From the Time source drop-down list, select MATLAB action.
4 In the Intergeneration time action field, use MATLAB code to enter the number

of entities that you want to generate. For example, you could use 8. In that case, at
simulation time 0, the Entity Generator block generates 8 simultaneous events.

1 Working with Entities

1-18

5 In the Events action tab, randomize the entity attribute. Select the Generate
event action and, in the Generate action field, enter the MATLAB code:

entity.Attribute1=rand();

The output of the Dashboard Scope block shows that the software generates multiple
entities at time 0.

 Generate Multiple Entities at Time Zero

1-19

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |
Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-7
• “Specify Intergeneration Times for Entities” on page 1-11
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Count Simultaneous Departures from a Server” on page 1-20
• “Combine Entities” on page 1-33
• “Replicate Entities on Multiple Paths” on page 1-34

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35

1 Working with Entities

1-20

Count Simultaneous Departures from a Server

This example shows how to count the simultaneous departures of entities from a server.
Use the d output from the Entity Server block to learn how many entities have
departed (or arrived at) the block. The output signal also indicates when departures
occurred. This method of counting is cumulative throughout the simulation.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Server, Entity Terminator, Simulink Function, and Scope blocks.

2 Double-click the Entity Generator block.

• In the Event actions tab, to generate random attribute values, enter:

entity.Attribute1=rand();

3 Double-click the Entity Server block. In the Main tab:

• In the Capacity parameter, enter inf.
• For the Service time parameter, select MATLAB action.
• In the Service time action parameter, enter:

dt = getServiceTime();

• In the Statistics tab, select Number of entities departed, d.
4 In the Simulink Function block, define the getServiceTime function.

 Count Simultaneous Departures from a Server

1-21

5 Connect the blocks as shown and simulate the model.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |

1 Working with Entities

1-22

Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

Related Examples
• “Generate Entities When Events Occur” on page 1-7
• “Specify Intergeneration Times for Entities” on page 1-11
• “Manipulate Entity Attributes” on page 1-26
• “Inspect Structures of Entities” on page 1-30
• “Generate Multiple Entities at Time Zero” on page 1-17
• “Combine Entities” on page 1-33
• “Replicate Entities on Multiple Paths” on page 1-34

More About
• “What Is an Entity?”
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35

 Working with Entity Attributes

1-23

Working with Entity Attributes

In this section...

“Attach Attributes” on page 1-23
“Set Attributes” on page 1-23

You can attach data to an entity using one or more attributes of the entity. Each attribute
has a name and a numeric value. You can read or change the values of attributes during
the simulation.

For example, suppose your entities represent a message that you are transmitting across
a communication network. You can attach the length of each particular message to the
message itself using an attribute named length.

You can also use attributes to specify the amount of a resource for your model. For more
information, see “Model with Resources” on page 4-2.

Attach Attributes

To attach attributes to an entity, use the Entity Generator block. Attribute
attachments can create new attributes or change the values of existing attributes. You
can attach attributes such as:

• Constant value
• Random numbers
• Elements of either a vector in the MATLAB workspace or a vector that you can type

in a block dialog box
• Values of an output argument of a MATLAB function that you write
• Values of a signal
• Outputs of a function defined in Simulink or Stateflow® environment that you write.

Set Attributes

To build and manage the list of attributes to attach to each departing entity, use the
controls under the Define attributes section of the Entity Generator block. Each
attribute appears as a row in a table.

1 Working with Entities

1-24

Using these controls, you can:

• Add an attribute manually to attach to the entity.
• Modify an attribute that you added to the table from the Available Attributes list to

attach to the entity.

The buttons under Set Attribute perform these actions.

Button Action Notes

Add a template attribute to
the table.

Rename the attribute and
specify its properties.

Remove the selected attribute
from the attribute table.

When you delete an attribute
this way, no confirmation
appears and you cannot undo
the operation.

The table displays the attributes you added manually. Use it to set these attribute
properties.

Property Specify Use

Attribute Name The name of the attribute.
Each attribute must have a
unique name.

Double-click the existing
name, and then type the new
name.

Attribute Initial Value The value to assign to
the attribute (when the
attribute comes from the
dialog box).

Double-click the value, and
then type the value you want
to assign.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-26

More About
• “What Is an Entity?”

 Working with Entity Attributes

1-25

• “Attribute Value Support” on page 1-35
• “Combine Entities” on page 1-33

1 Working with Entities

1-26

Manipulate Entity Attributes

The attributes table describes some ways that you can use data that you have attached to
an entity.

• Create a signal
• Create a plot
• Compute a different attribute value
• Help specify behavior of a block that supports the use of attribute values for block

parameters. Examples are the service time for a server and the selected port for an
output switch.

Suppose that your entity possesses an attribute with one of these quantities:

• Service time to be used by a downstream server block
• Switching criterion to be used by a downstream switch block

When an entity with one of these attribute quantities arrives at a server or switch block,
you can directly reference the attribute using an option on the server or switch block
dialog box. This approach is better than creating a message or signal with the value and
delivering it before the entity arrives.

Write Functions to Manipulate Attributes

To manipulate attributes using code, use the Event actions tab of a block. In this tab,
you can write MATLAB code to manipulate the attribute. To access the attribute, use the
notation entityName.attributeName. For example:

entity.Attribute1=5;

For example, you might want manipulate the attributes for service completion.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity
Servern, and Entity Terminator blocks and connect them.

 Manipulate Entity Attributes

1-27

2 Double-click Entity Generator and, in the Entity type tab, add three attributes
to the attributes table.

3 In the Entity Server block, click the Entity actions tab.
4 For the Service complete action, enter MATLAB code to manipulate the entity

attributes you added in the Entity Generator block. For example:

1 Working with Entities

1-28

This code updates the Entity Server block with the event action icon.
5 To see the action, in the model, hover over the Entity Server block event action

icon block.

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-26

 Manipulate Entity Attributes

1-29

More About
• “What Is an Entity?”
• “Working with Entity Attributes” on page 1-23
• “Attribute Value Support” on page 1-35

1 Working with Entities

1-30

Inspect Structures of Entities

You can inspect entity structures using these methods:

• On a signal line, using the Signal Hierarchy Viewer (for more information, see
“Display Entity Types” on page 1-30).

• In a block at run-time, using the Entity Inspector

In this section...

“Display Entity Types” on page 1-30
“Inspect Entities at Run Time” on page 1-31

Display Entity Types

To show entity types in your model, in the model editor, right-click a line and select
Signal Hierarchy. The Signal Hierarchy Viewer interactively displays about entities,
signals, and bus objects. For more information on the Signal Hierarchy Viewer, see
“Signal Hierarchy Viewer”.

If you have configured any blocks to receive an entity structure that the preceding
block does not provide, upon compilation, the software automatically displays entity
types. This behavior helps you to troubleshoot the mismatch in entity structures before
simulation. The software displays an approximate list of the entity types and attributes.
Use this as a guideline and not as a definitive list.

If entities on two separate paths have the same structure throughout the model, you can
use the same entity type for both entity paths.

 Inspect Structures of Entities

1-31

If you now modify the second Entity Generate block path to change data2 to data3,
the structure of entities on the second path becomes unique. You must specify a new
entity type name for the second Entity Generator block.

Inspect Entities at Run Time

To inspect entities at run-time, use the Entity Inspector. Inspect entities and their
attribute values in a block.

1 In a SimEvents model, use the Simulink Simulation Stepper to step through the
model.

2 As you step through the model, each block with entities updates to contain a
magnifying glass.

3 To display entity details, including attributes, click the magnifying glass.

1 Working with Entities

1-32

4 To see the number of entities, hover over the magnifying glass.

Alternatively, use the SimEvents Debugger to inspect entities. For more information, see
SimEvents Debugger.

See Also
Entity Generator | SimEvents Debugger

More About
• “What Is an Entity?”
• “Entity Types” on page 1-2
• “Role of Entity Ports and Paths”
• “Attribute Value Support” on page 1-35

 Combine Entities

1-33

Combine Entities

You can combine entities from different paths using the Composite Entity Creator
block. The entities that you combine, called component entities, might represent different
parts within a larger item, such as the header, payload, and trailer that are parts of a
data packet. Alternatively, you can model resource allocation by combining an entity that
represents a resource with an entity that represents a part or other item.

The Composite Entity Creator block and its surrounding blocks automatically
detect when all necessary component entities are present and when the composite entity
that results from the combining operation will be able to advance to the next block.

The Composite Entity Creator block provides options for managing information
(attributes and timers) associated with the component entities. You can also configure
the Composite Entity Creator block to make the combining operation reversible via
the Composite Entity Splitter block.

See Also
Composite Entity Creator | Composite Entity Splitter | Entity
Generator

More About
• “What Is an Entity?”

1 Working with Entities

1-34

Replicate Entities on Multiple Paths
The Entity Replicator block enables you to distribute copies of an entity on multiple
entity paths. Replicating entities might be a requirement of the situation you are
modeling. For example, copies of messages in a multicasting communication system can
advance to multiple transmitters or multiple recipients.

Similarly, copies of computer jobs can advance to multiple computers in a cluster so that
the jobs can be processed in parallel on different platforms.

In some cases, replicating entities is a convenient modeling construct.

Modeling Notes

• Unlike the Entity Output Switch block, the Entity Replicator block has
departures at all of its entity output ports that are not blocked, not just a single
selected entity output port.

• If your model routes the replicates such that they use a common entity path, then be
aware that blockages can occur during the replication process. For example, if you
have this scenario:

• An Entity Replicator block has the Replicas depart from parameter set to
Separate output ports.

• The block has these output ports connected to individual Entity Server blocks.

A blockage can occur because the servers can accommodate at most one of the
replicates at a time. The blockage causes fewer than the maximum number of
replicates to depart from the block.

• Each time the Entity Replicator block replicates an entity, the copies depart in a
sequence whose start is determined by the Hold original entity until all replicas
depart parameter. Although all copies depart at the same time instant, the sequence
might be significant in some modeling situations. For details, see the reference page
for the Entity Replicator block.

See Also
Entity Generator | Entity Replicator

More About
• “What Is an Entity?”

 Attribute Value Support

1-35

Attribute Value Support

These lists summarize the characteristics of attribute values for structured entity types.

Permitted Characteristics of Attribute Values

• Real or complex
• Array of any dimension, where the dimensions remain fixed throughout the

simulation
• All built-in data types (double, single, int8, uint8, int16, uint16, int32, and

uint32)
• Enumerations

For a given attribute, the characteristics of the value must be consistent throughout the
discrete-event system in the model.

Not Permitted as Attribute Values

• Structure
• Bus
• Variable-size signals or variable-size arrays
• Frame

See Also
Discrete Event Chart | Entity Generator | MATLAB Discrete Event System

Related Examples
• “Manipulate Entity Attributes” on page 1-26

More About
• “What Is an Entity?”
• “Working with Entity Attributes” on page 1-23

2

Modeling Queues and Servers

• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-4
• “Task Preemption in a Multitasking Processor” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-9
• “Model Server Failure” on page 2-10

2 Modeling Queues and Servers

2-2

Model Basic Queuing Systems

In this section...

“Example of a Logical Queue” on page 2-2
“Vary the Service Time of a Server” on page 2-2

Example of a Logical Queue

Suppose that you are modeling a queue that can physically hold 100 entities and you
want to determine what proportion of the time the queue length exceeds 10. You can
model the long queue as a pair of shorter queues connected in series. The shorter queues
have length 90 and 10.

Although the division of the long queue into two shorter queues has no basis in physical
reality, it enables you to gather statistics related to one of the shorter queues. In
particular, you can view the queue length (n) of the queue having length 90. If the signal
is positive over a nonzero time interval, then the length-90 queue contains an entity that
cannot advance to the length-10 queue. This means that the length-10 queue is full. As
a result, the physical length-100 queue contains more than 10 items. Determining the
proportion of time the physical queue length exceeds 10 is equivalent to determining the
proportion of time the queue length signal of the logical length-90 queue exceeds 0.

Vary the Service Time of a Server

You can vary the service time of a server using one of the following methods:

• Constant source, where you vary the constant
• Randomized source
• Arbitrary source
• Time-based source

Use the Service time source parameter of the Entity Server block to apply these
methods. You can select from:

• Dialog

Enter the constant value in the Service time value parameter.
• Signal port

 Model Basic Queuing Systems

2-3

Connect a time source to the resulting signal port.
• Attribute

Enter the name of the attribute that contains data to be interpreted as service.
• MATLAB action

In the Service time action section, enter MATLAB code to vary the service time.
Assign the variable dt, which the model uses as service time.

See Also
Entity Queue | Entity Server

Related Examples
• “Sort by Priority” on page 2-4
• “Task Preemption in a Multitasking Processor” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-9
• “Model Server Failure” on page 2-10

More About
• “Storage”

2 Modeling Queues and Servers

2-4

Sort by Priority
In this section...

“Behavior of Priority Mode of Entity Queue Block ” on page 2-4
“Serve Preferred Customers First” on page 2-4

Behavior of Priority Mode of Entity Queue Block

The Priority mode of the Entity Queue block supports queuing in which entities
positions in the queue are based primarily on specific attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute and the sorting
direction using the Priority source and Sorting direction parameters in the block
dialog box.

Serve Preferred Customers First

In this example, two types of customers enter a queuing system. One type, considered
to be preferred customers, are less common but require longer service. The priority
queue places preferred customers ahead of nonpreferred customers. The model plots
the average system time for the set of preferred customers and separately for the set of
nonpreferred customers in a Dashboard Scope block.

You can see from the plots that despite the shorter service time, the average system time
for the nonpreferred customers is much longer than the average system time for the
preferred customers.

 Sort by Priority

2-5

Comparison with Unsorted Behavior

If the queue used a FIFO discipline for all customers instead of a priority sorting, then
the average system time would decrease slightly for the nonpreferred customers and
increase markedly for the preferred customers.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Task Preemption in a Multitasking Processor” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-9
• “Model Server Failure” on page 2-10

More About
• “Storage”

2 Modeling Queues and Servers

2-6

Task Preemption in a Multitasking Processor

This example shows how to force service completion in an Entity Server block using
functionality available on the block Preemption tab.

The example shows preemption—replacement—of low priority tasks by a high priority
task in a multitasking processor. An Entity Server block represents the task processor
presented with a capacity to process multiple concurrent tasks.

The following graphic shows how the model generates both low and high priority tasks.

• The top and bottom Entity Generator randomly generate entities that represent
high and low priority tasks, respectively. Both blocks use the exprnd function
to generate random entities. The top block uses exprnd(3), the bottom uses
exprnd(1), which requires the Statistics and Machine Learning Toolbox™ license.

• The Entity Input Switch block merges the paths of the new low priority tasks
with previously preempted tasks that are returning from the task processor (server).

• The Simulink Function block runs the getCurrentTime function to start a
timer on the low priority tasks. When preemption occurs, a downstream Simulink
Function block determines the remaining service time of the preempted tasks.

• The Entity Output Switch block merges the paths of the high and low priority
tasks. Tasks on the merged path proceed for processing.

An Entity Server block represents a multitasking processor with capacity for multiple
tasks.

 Task Preemption in a Multitasking Processor

2-7

When preemption occurs, causing the Entity Server block to complete immediately
service of all low priority tasks, one of the two Simulink Function blocks calculates
the elapsed time of each departing task using the recordPreferredWaitTimes and
recordNonPreferredWaitTimes functions. The two Entity Terminator blocks calls
these Simulink Function to calculate the elapsed times.

If the elapsed time of a departing task is less than the service time of the Entity
Server block, meaning that preemption forced the task to depart the server early, the
Output Switch block feeds the task back to reenter the server. If the elapsed time in
the Simulink Function getCurrentTime block is equal to the service time of the
Entity Server block, the server has completed the full service time on the task. The
entity terminates in the Entity Terminator block.

The scope plots show the simulation results.

See Also
Entity Queue | Entity Server

2 Modeling Queues and Servers

2-8

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-4
• “Determine Whether a Queue Is Nonempty” on page 2-9
• “Model Server Failure” on page 2-10

More About
• “Storage”

 Determine Whether a Queue Is Nonempty

2-9

Determine Whether a Queue Is Nonempty

To determine whether a queue is storing any entities, use this technique:

1 Enable the n output signal from the queue block. In the block dialog box, on the
Statistics tab, select the Number of entities in block, n check box.

2 From the Sinks library in the Simulink library set, insert a Scope block into the
model. Connect the n output port of the queue block to the input port of the Scope
block.

The scope shows if the queue is empty.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-4
• “Task Preemption in a Multitasking Processor” on page 2-6
• “Model Server Failure” on page 2-10

More About
• “Storage”

2 Modeling Queues and Servers

2-10

Model Server Failure

In this section...

“Server States” on page 2-10
“Use a Gate to Implement a Failure State” on page 2-10

Server States

In some applications, it is useful to model situations in which a server fails. For example,
a machine breaks down and later is repaired, or a network connection fails and later is
restored. This section explores ways to model failure of a server, and server states.

Server blocks do not have built-in states, so you can design states in any way that is
appropriate for your application. Some examples of possible server states are in this
table.

Server as Communication
Channel

Server as Machine Server as Human Processor

Transmitting message Processing part Working
Connected but idle Waiting for new part to

arrive
Waiting for work

Unconnected Off Off duty
Holding message (pending
availability of destination)

Holding part (pending
availability of next operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Use a Gate to Implement a Failure State

For any state that represents a server inability or refusal to accept entity arrivals even
though the server is not necessarily full, a common implementation involves an Entity
Gate block preceding the server.

The gate prevents entity access to the server whenever the gate control message at
the inport port at the top of the block carries zero or negative values. The logic that
creates the control message determines whether the server is in a failure state. You can

 Model Server Failure

2-11

implement such logic using the Simulink Function block, using a Message Send
block, or using Stateflow charts to transition among a finite number of server states.

This example shows an instance in which an Entity Gate block precedes a server. The
example is not specifically about a failure state, but the idea of controlling access to a
server is similar. It models a stochastically occurring failure that lasts for some amount
of time.

Note: A gate prevents new entities from arriving at the server but does not prevent the
current entity from completing its service. If you want to eject the current entity from the
server upon a failure occurrence, then you can use the preemption feature of the server to
replace the current entity with a high-priority “placeholder” entity.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Sort by Priority” on page 2-4

2 Modeling Queues and Servers

2-12

• “Task Preemption in a Multitasking Processor” on page 2-6
• “Determine Whether a Queue Is Nonempty” on page 2-9

More About
• “Storage”

3

Routing Techniques

• “Role of Paths in SimEvents Models” on page 3-2
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16
• “Enable a Gate for a Time Interval” on page 3-18

3 Routing Techniques

3-2

Role of Paths in SimEvents Models

In this section...

“Definition of Entity Paths” on page 3-2
“Implications of Entity Paths” on page 3-2
“Overview Blocks for Designing Paths” on page 3-2

Definition of Entity Paths

An entity path is a connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two SimEvents blocks. An entity path represents
the equivalence between an entity's departure from the first block and arrival at the
second block. For example, any entity that departs from the output port of an Entity
Queue block set to FIFO mode equivalently arrives at an Entity Server block input
port.

The existence of the entity path does not guarantee that any entity actually uses the
path; for example, the simulation could be so short that no entities are ever generated.
Even when an entity path is used, it is used only at a discrete set of times during the
simulation.

Implications of Entity Paths

In some models, you can use the entity connection lines to infer the full sequence of
blocks that a given entity arrives at, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not
completely determine the sequence of blocks that each entity arrives at.

By looking at entity connection lines alone, you cannot tell which queue block's input port
an entity will arrive at. Instead, you need to know more about how the Entity Output
Switch block behaves and you might even need to know the outcome of certain run-time
decisions.

Overview Blocks for Designing Paths

You design entity paths by choosing or combining entity paths using these blocks:

• Entity Input Switch

 Role of Paths in SimEvents Models

3-3

• Entity Output Switch

• Entity Replicator

These blocks have extra entity ports that let you vary the model's topology (that is, the
set of blocks and connection lines).

Typical reasons for manipulating entity paths are

• To describe an inherently parallel behavior in the situation you are modeling — for
example, a computer cluster with two computers that share the computing load. You
can use the Entity Output Switch block to send computing jobs to one of the two
computers. You might also use the Entity Input Switch block if computing jobs
share a common destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example, repeating an
operation if quality criteria such as quality of service (QoS) are not met. You can use
the Entity Input Switch block to combine the paths of new entities and entities
that require a repeated operation.

• To incorporate logical decision making into your simulation — for example,
determining scheduling protocols. You might use the Entity Input Switch block
to determine which of several queues receives attention from a server.

Other blocks in the SimEvents library have secondary features, such as preemption from
a server, that give you opportunities to design paths.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Use Attributes to Route Entities” on page 3-15

3 Routing Techniques

3-4

• “Role of Gates in SimEvents Models” on page 3-16

 Select Departure Path Using Entity Output Switch

3-5

Select Departure Path Using Entity Output Switch

In this section...

“Role of the Entity Output Switch” on page 3-5
“Sample Use Cases” on page 3-5
“Select the First Available Server” on page 3-6
“Use an Attribute to Select an Output Port” on page 3-6

Role of the Entity Output Switch

The Entity Output Switch block selects one among a number of entity output ports.
The selected port can change during the simulation. You have several options for criteria
that the block uses to select an entity output port.

When the selected port is not blocked, an arriving entity departs through this port.

Sample Use Cases

Here are some scenarios in which you might use an output switch:

• Entities advance to one of several queues based on efficiency or fairness concerns. For
example, airplanes advance to one of several runways depending on queue length, or
customers advance to the first available cashier out of several cashiers.

Comparing different approaches to efficiency or fairness, by testing different rules to
determine the selected output port of the output switch, might be part of your goal in
simulating the system.

• Entities advance to a specific destination based on their characteristics. For example,
parcels advance to one of several delivery vehicles based on the locations of the
specified recipients.

• Entities use an alternate route in case the preferred route is blocked. For example, a
communications network drops a packet if the route to the transmitter is blocked and
the simulation gathers statistics about dropped packets.

3 Routing Techniques

3-6

The topics listed below illustrate the use of the Entity Output Switch block.

Topic Features of Example

“Select the First Available Server” on page
3-6

First port that is not blocked

switching criterion
“Use an Attribute to Select an Output Port”
on page 3-6

Attribute-based switching, where the
attribute value is random

Select the First Available Server

Assume an example where entities arriving at the Entity Output Switch block
depart through the first entity output port that is not blocked, as long as at least one
entity output port is not blocked. An everyday example of this approach is a single
queue of people waiting for service by one of several bank tellers, cashiers, call center
representatives, etc. Each person in the queue wants to advance as soon as possible to
the first available service provider without preferring one over another.

You can implement this approach by setting the Switching criterion parameter in the
Entity Output Switch block to First port that is not blocked.

Use an Attribute to Select an Output Port

Consider the situation in which parcels are sorted among several delivery vehicles based
on the locations of the specified recipients. If each parcel is an entity, then you can attach
data to each entity to indicate the location of its recipient. To implement the sorting,
set the Switching criterion parameter in the Entity Output Switch block to From
attribute.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12

 Select Departure Path Using Entity Output Switch

3-7

• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-8

Select Arrival Path Using Entity Input Switch

In this section...

“Role of the Input Switch” on page 3-8
“Round-Robin Approach to Choosing Inputs” on page 3-8

Role of the Input Switch

The Entity Input Switch chooses among a number of entity input ports. This block
selects exactly one entity input port for potential arrivals and makes all other entity
input ports unavailable. The selected entity input port can change during the simulation.
You have several options for criteria that the block uses for selecting an entity input port.

A typical scenario in which you might use an input switch is when multiple sources
of entities feed into a single queue, where the sequencing follows specific rules. For
example, users of terminals in a time-shared computer submit jobs to a queue that feeds
into the central processing unit, where an algorithm regulates access to the queue so as
to prevent unfair domination by any one user.

Round-Robin Approach to Choosing Inputs

In a round-robin approach, an input switch cycles through the entity input ports in
sequence. After the last entity input port, the next selection is the first entity input
port. The switch selects the next entity input port after each entity departure. When the
switch selects an entity input port, it makes the other entity input ports unavailable,
regardless of how long it takes for an entity to arrive at the selected port.

You can implement a round-robin approach by

1 Setting the Active port selection parameter to Switch.
2 Setting the Switching criterion parameter to Round robin.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5

 Select Arrival Path Using Entity Input Switch

3-9

• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-10

Combine Entity Paths

In this section...

“Using Entity Input Switch to Combine Paths” on page 3-10
“Sequence Simultaneous Pending Arrivals” on page 3-10

Using Entity Input Switch to Combine Paths

You can merge multiple paths into a single path using the Entity Input Switch
block with the Active port selection parameter set to All. Merging entity paths does
not change the entities themselves, just as merging lanes on a road does not change
the vehicles that travel on it. In particular, the Entity Input Switch block does not
create aggregates or batches.

Here are some scenarios in which you might combine entity paths:

• Attaching different data — Multiple entity generator blocks create entities having
different values for a particular attribute. The entities then follow a merged path but
might be treated differently later based on their individual attribute values.

• Merging queues — Multiple queues merge into a single queue.
• Connecting a feedback path — A feedback path enters the same queue as an ordinary

path.

Sequence Simultaneous Pending Arrivals

The Entity Input Switch block does not experience any collisions, even if multiple
entities attempt to arrive at the same time. The categories of behavior are as follows:

• If the entity output port is not blocked when the entities attempt to arrive, then the
sequence of arrivals depends on the sequence of departure events from blocks that
precede the Entity Input Switch block.

Even if the departure time is the same for multiple entities, the sequence might affect
the system's behavior. For example, if the entities advance to a queue, the departure
sequence determines their positions in the queue.

• If pending entities are waiting to advance to the Entity Input Switch block when
its entity output port changes from blocked to unblocked, then the entity input ports

 Combine Entity Paths

3-11

are notified of the change sequentially. The change from blocked to unblocked means
that an entity can advance to the Entity Input Switch block.

If at least two entities are waiting to advance to the Entity Input Switch block
via distinct entity input ports, then the notification sequence is important because the
first port to be notified of the change is the first to advance an entity to the Entity
Input Switch block.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-12

Use Messages To Route Entities

In this section...

“Control Output Switch with a Message” on page 3-12
“Specify an Initial Port Selection” on page 3-13

Control Output Switch with a Message

This example shows how to change the selected output port of an Entity Output
Switch block to route entities along different paths. The software selects the path on a
per-entity basis, not on a predetermined time schedule.

Consider the following example.

The SwitchCtrl function contains a single Repeating Sequence Stair block, whose
Sample time parameter is set to -1 (inherited).

 Use Messages To Route Entities

3-13

When the Simulink Function block executes, it outputs the next number from a
repeating sequence. In this model, the output message value is 3, 2 or 1, based on the
sequence of values specified in the Repeating Sequence Stair block.

When service in the Entity Server block is complete, the entity advances to the
Entity Output Switch block. The output message of the Simulink Function block
determines which output port the entity uses when it departs the Entity Output
Switch block.

Specify an Initial Port Selection

When the Entity Output Switch block uses an input message, the block might
attempt to use the message before its first sample time hit. If the initial value of the
message is out of range (for example, it is unavailable). You should then specify the
initial port selection in the Entity Output Switch block's dialog box. Use this
procedure:

1 Select From control port.
2 Set From control port to the desired initial port selection. The value must be an

integer between 1 and Number of output ports. The Entity Output Switch
block uses Initial port selection until the first control port message arrives.

3 Routing Techniques

3-14

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

 Use Attributes to Route Entities

3-15

Use Attributes to Route Entities

Suppose entities represent manufactured items that undergo a quality control process
followed by a packaging process. Items that pass the quality control test proceed to one
of three packaging stations, while items that fail the quality control test proceed to one of
two rework stations. You can model the decision making using these switches:

• An Entity Output Switch block that routes items based on an attribute that
stores the results of the quality control test

• An Entity Output Switch block that routes passing-quality items to the
packaging stations

• An Entity Output Switch block that routes failing-quality items to the rework
stations

You can use the block Switching criterion parameter From attribute option to use
an attribute to select the output port.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Role of Gates in SimEvents Models” on page 3-16

3 Routing Techniques

3-16

Role of Gates in SimEvents Models

In this section...

“Overview of Gate Behavior” on page 3-16
“Gate Behavior” on page 3-16

Overview of Gate Behavior

By design, certain blocks change their availability to arriving entities depending on the
circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full to capacity.
• An input switch accepts an arriving entity through a single selected entity input port

but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities advance from
one block to the next. A gate provides flexible control via its changing status as either
open or closed: by definition, an open gate permits entity arrivals as long as the entities
would be able to advance immediately to the next block, while a closed gate forbids entity
arrivals. You configure the gate so that it opens and closes under circumstances that are
meaningful in your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be simulating
a manufacturing scenario over a monthlong period, where a server represents a
machine that runs only 10 hours per day. An enabled gate can precede the server, to
make the server's availability contingent upon the time.

• To make departures from one queue contingent upon departures from a second queue.
A release gate can follow the first queue. The gate's control input determines when
the gate opens, based on decreases in the number of entities in the second queue.

• With the First port that is not blocked mode of the Entity Output
Switch block. Suppose each entity output port of the switch block is followed by a
gate block. An entity attempts to advance via the first gate; if it is closed, then the
entity attempts to advance via the second gate, and so on.

Gate Behavior

The Entity Gate block offers these fundamentally different kinds of gate behavior:

 Role of Gates in SimEvents Models

3-17

• The enabled gate, which uses a control signal to determine time intervals over which
the gate is open or closed

• The release gate, which uses a control message to determine a discrete set of times at
which the gate is instantaneously open. The gate is closed at all other times during
the simulation.

Tip Many models follow a gate with a storage block, such as a queue or server.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12
• “Enable a Gate for a Time Interval” on page 3-18

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15

3 Routing Techniques

3-18

Enable a Gate for a Time Interval

In this section...

“Behavior of Entity Gate Block” on page 3-18
“Control Joint Availability of Two Servers” on page 3-18

Behavior of Entity Gate Block

The Entity Gate block uses a control signal at the input port labeled en to determine
when the gate is open or closed:

• When a message with a positive payload arrives at the enable port at the top of the
block, the gate is open and an entity can arrive as long as it would be able to advance
immediately to the next block.

• When a message with zero or negative payload arrives at the enable port at the top of
the block, the gate is closed and no entity can arrive.

Because the en signal can remain positive for a time interval of arbitrary length, an
enabled gate can remain open for a time interval of arbitrary length. The length can be
zero or a positive number.

Depending on your application, the gating logic can arise from time-driven dynamics,
state-driven dynamics, a SimEvents block's statistical output signal, or a computation
involving various types of signals.

Control Joint Availability of Two Servers

Suppose that each entity undergoes two processes, one at a time, and that the first
process does not start if the second process is still in progress for the previous entity.
Assume for this example that it is preferable to model the two processes using two
Single Server blocks in series rather than one Single Server block whose service
time is the sum of the two individual processing times; for example, you might find a
two-block solution more intuitive or you might want to access the two Single Server
blocks' utilization output signals independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first server can
start serving a new entity while the second server is still serving the previous entity.
This does not accomplish the stated goal. The model needs a gate to prevent the first

 Enable a Gate for a Time Interval

3-19

server from accepting an entity too soon, that is, while the second server still holds the
previous entity.

See Also
Entity Gate | Entity Input Switch | Entity Output Switch | Entity
Replicator

Related Examples
• “Select Departure Path Using Entity Output Switch” on page 3-5
• “Select Arrival Path Using Entity Input Switch” on page 3-8
• “Combine Entity Paths” on page 3-10
• “Use Messages To Route Entities” on page 3-12

More About
• “Role of Paths in SimEvents Models” on page 3-2
• “Use Attributes to Route Entities” on page 3-15
• “Role of Gates in SimEvents Models” on page 3-16

4

Work with Resources

• “Model with Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4

4 Work with Resources

4-2

Model with Resources

In this section...

“Resource Blocks” on page 4-2
“Resource Creation Workflow” on page 4-2

Resource Blocks

For an introduction to resources, see “Entity Resources”. The SimEvents software
supplies the following resource allocation blocks:

Action Block

Acquire resource Resource Acquirer

Define resource Resource Pool

Release resource Resource Releaser

Resource Creation Workflow

1 Specify resources using the Resource Pool block. Define one resource per
Resource Pool block. Multiple Resource Pool blocks can exist in the model with
multiple entities sharing the resources.

2 Identify resources to be used with the Resource Acquirer block. You can identify
these resources before specifying them in a Resource Pool block, or select them
from the available resources list. However, the resource definitions must exist by the
time you simulate the model. Multiple Resource Acquire blocks can exist in the
model.

3 To release resources, include one or more Resource Releaser blocks. You can
configure Resource Release blocks to release some or all resources for an entity.
Alternatively, you can release all resources for an entity directly using the Entity
Terminator block.

Tip To determine how long an entity holds a resource, insert a server block before the
Resource Acquire block. In the Service time parameter, enter how long you want the
entity to hold the resource.

 Model with Resources

4-3

An entity implicitly releases held resources when it:

• Is destroyed.
• Enters an Entity Replicator block and the block creates multiple copies of that

entity.
• Is combined with other entities using the Composite Entity Creator block.
• Is split into its component entities using the Composite Entity Splitter block.

See Also
Resource Acquirer | Resource Pool | Resource Releaser

4 Work with Resources

4-4

Set Resource Amount with Attributes

Use the Selected Resources table of the Resource Acquirer block to receive the
resource amount definition from the block dialog box or an entity attribute. Using
attributes as the source for the resource requires synchronicity between these blocks:

• Entity Generator block with the attribute definition that Resource Acquirer
wants to supply the source amount

• Resource Pool block that defines the resource
• Resource Acquirer block the acquires the resource

This example shows this synchronicity.

1 Open a new model and add Resource Pool, Entity Generator, and Resource
Acquirer blocks. For the Resource Pool block:

• Set Resource name to water.
• Set Resource amount to 20.
• In the Statistics tab, select Amount in use, #u.

2 In the Entity Generator block dialog box, click the Entity type tab and in the
Define attributes table:

• Enter the attribute name, water_amount, to indicate that the attribute defines
the amount of the resource.

• Set the value to 10.
3 In the Resource Acquirer block dialog box, click the Entity type tab and under

Available Resources, select water and move it to the Selected Resources table.
4 In the Selected Resources table, in the water entry:

• For Amount Source, select Attribute.
• For Amount, enter water_amount to match the attribute name defined in the

Entity Generator block.
5 To complete the model, add the following blocks and connect them as shown in the

figure:

• Entity Terminator (select the Statistics tab Number of entities arrived,
#a check box)

• Two Scope blocks

 Set Resource Amount with Attributes

4-5

6 Simulate the model and observe the amount of resources in use (Scope).

See Also
Resource Acquirer | Resource Pool | Resource Releaser

5

Visualization, Statistics, and
Animation

• “Use Statistics to Understand SimEvents Models” on page 5-2
• “Access Statistics from SimEvents Blocks” on page 5-5
• “Visualization and Animation” on page 5-8

5 Visualization, Statistics, and Animation

5-2

Use Statistics to Understand SimEvents Models

In this section...

“Statistics for Data Analysis” on page 5-2
“Statistics for Run-Time Control” on page 5-3
“Statistical Tools for Discrete-Event Simulation” on page 5-3

Statistics for Data Analysis

The purpose of creating a discrete-event simulation is often to improve understanding of
the underlying system or guide decisions about the underlying system. Numerical results
gathered during simulation can be important tools. For example:

• If you simulate the operation and maintenance of equipment on an assembly line, you
might use the computed production and defect rates to help decide whether to change
your maintenance schedule.

• If you simulate a communication bus under varying bus loads, you might use
computed average delays in high- or low-priority messages to help determine whether
a proposed architecture is viable.

When you design the statistical measures that you use to learn about the system,
consider these questions:

• Which statistics are meaningful for your investigation or decision? For example, if you
are trying to maximize efficiency, then what is an appropriate measure of efficiency in
your system? As another example, does a mean give the best performance measure for
your system, or is it also worthwhile to consider the proportion of samples in a given
interval?

• How can you compute the desired statistics? For example, do you need to ignore
any transient effects, does the choice of initial conditions matter, and what stopping
criteria are appropriate for the simulation?

• To ensure sufficient confidence in the result, how many simulation runs do you
need? One simulation run, no matter how long, is still a single sample and probably
inadequate for valid statistical analysis.

For details concerning statistical analysis and variance reduction techniques, see the
works [7], [4], [1], and [2].

 Use Statistics to Understand SimEvents Models

5-3

Statistics for Run-Time Control

Some systems rely on statistics to influence the dynamics. For example, a queuing
system with discouraged arrivals has a feedback loop that adjusts the arrival rate
throughout the simulation based on statistics reported by the queue and server.

When you create simulations that use statistical signals to control the dynamics, you
must have access to the current values of the statistics at key times throughout the
simulation, not just at the end of the simulation. Some questions to consider while
designing your model are:

• Which statistics are meaningful, and how should they influence the dynamics of the
system?

• How can you compute the desired statistics at the right times during the simulation?
It is important to understand when SimEvents blocks update each of their statistical
outputs and when other blocks can access the updated values.

• Will small perturbations result in large changes in the system behavior? When using
statistics to control the model, you might want to monitor those statistics or other
statistics to check whether the system is undesirably sensitive to perturbations.

Statistical Tools for Discrete-Event Simulation

The table lists components that SimEvents models commonly use to gather or compute
statistics.

Statistical Information Available Tools

Number of entities in a queue or server n output signal from queue and server blocks
Utilization of a server util output signal from Entity Server block
Number of entities that have departed
from a block

• d output signal from various SimEvents blocks
• Entity Generator

• Entity Server

• Entity Queue

• Multicast Receive Queue

• Resource Acquirer

Pending entity present in block • pe output signal from various SimEvents blocks
• Entity Generator

5 Visualization, Statistics, and Animation

5-4

Statistical Information Available Tools

• Entity Server

Number of entities arrived a output signal from Entity Terminator block
Average wait • w output signal from various SimEvents blocks

• Entity Queue

• Entity Server

• Resource Acquirer

Average intergeneration time w output signal from Entity Generator block
Average queue length l output signal from Entity Queue block
Number of pending entities np output signal from Entity Server block
Custom computation on event actions • Simulink Function

• MATLAB code

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Queue |
Entity Server | Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5

More About
• “Statistics Through SimEvents Blocks”
• “Count Entities”
• “Visualization and Animation” on page 5-8

 Access Statistics from SimEvents Blocks

5-5

Access Statistics from SimEvents Blocks

Most SimEvents blocks can produce one or more statistical output signals.

This procedure shows you how to access a statistical output signal for a given SimEvents
block.

5 Visualization, Statistics, and Animation

5-6

1 Determine which statistical output signal you want to access and find the associated
parameter in the block dialog box. To see which statistics are available, open
the block dialog box. Usually, the list of available statistics appears as a list of
parameters on the Statistics tab of the dialog box. In cases where the dialog box
has no Statistics tab, the dialog box has so few parameters that the parameters
associated with statistics are straightforward to locate.

2 Select the check box. After you apply the change, the block has a new signal output
port corresponding to that statistic.

3 Connect the new signal output port to the signal input port of another block. The
table lists some common examples.

Note: Use scopes and other observer blocks to observe individual statistic ports.
However, you cannot use the same scope to observe multiple statistics ports. To
observe multiple statistic ports, consider using a dashboard or the Simulation Data
Inspector.

If You Want to... Use this Block...

Create a plot using the statistic. Simulink Scope or dashboard
Show the statistic on the block icon
throughout the simulation.

Simulation Data Inspector or
Display

Write the data set to the MATLAB
workspace when the simulation stops
or pauses. To learn more, see “Save
Simulation Data” on page 7-4.

Signal logging or To Workspace.
In addition, you can also log signals
observed using scopes and Simulation
Data Inspector to the workspace.

Perform custom data processing. See
“Derive Custom Statistics” on page
5-6 for some suggestions.

Custom subsystem or computational
block

Derive Custom Statistics

You can use the built-in statistical signals from SimEvents blocks to derive more
specialized or complex statistics that are meaningful in your model. One approach is to
compute statistics during the simulation. You can implement your computations using a
graphical block-diagram approach or a nongraphical coded approach. Alternatively, you
can compute statistics using MATLAB code after the simulation is complete.

 Access Statistics from SimEvents Blocks

5-7

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Queue |
Entity Server | Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5

More About
• “Statistics Through SimEvents Blocks”
• “Use Statistics to Understand SimEvents Models” on page 5-2
• “Count Entities”
• “Visualization and Animation” on page 5-8

5 Visualization, Statistics, and Animation

5-8

Visualization and Animation

Visualize and animate simulations in SimEvents models using tools available in
Simulink and SimEvents software.

• You can place many Simulink Sink blocks directly on the entity line to observe
entities, including the To Workspace and dashboard scopes.

• If the entity type is anonymous, you can place a Scope block.
• To observe bus or structured type entities, use the Simulation Data Inspector or

dashboard scopes. The Scope and Display blocks do not support buses.

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Queue |
Entity Server | Multicast Receive Queue | Resource Acquirer

Related Examples
• “Access Statistics from SimEvents Blocks” on page 5-5
• “Visualize and Animate Simulations”

More About
• “Statistics Through SimEvents Blocks”
• “Count Entities”

6

Learning More About SimEvents
Software

• “Event Calendar” on page 6-2
• “Entity Priorities” on page 6-3
• “Livelock Prevention” on page 6-5
• “Storage and Nonstorage Blocks” on page 6-6

6 Learning More About SimEvents Software

6-2

Event Calendar

During a simulation, the model maintains a list, called the event calendar, of upcoming
events that are scheduled for the current simulation time or future times. The event
calendar sorts multiple events that are scheduled for the same time by the priority of the
entity for which they are scheduled. The model refers to the event calendar to execute
events at the correct simulation time and in an appropriately prioritized sequence.

These are the events that the event calendar tracks.

Event For Blocks

Generate Entity Generator, MATLAB Discrete-Event System
Forward Entity Generator, Entity Queue, Multicast Receive

Queue, Entity Server, Entity Terminator, Discrete
Event Chart, MATLAB Discrete Event System, Entity
Replicator, Resource Acquirer

ServiceComplete Entity Server

Timer MATLAB Discrete-Event System, Discrete Event Chart
Iterate MATLAB Discrete-Event System

Destroy MATLAB Discrete-Event System

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity
Replicator | Entity Server | Entity Terminator | MATLAB Discrete Event
System | Multicast Receive Queue | Resource Acquirer

 Entity Priorities

6-3

Entity Priorities

SimEvents software uses entity priorities to prioritize events. The smaller the priority
value, the higher the priority.

You specify entity priorities when you generate entities. You can later change entity
priorities using an event action for the priority. For example, in the Entity Generator
Event actions tab, you can define an event action to change the entity priority during
simulation using code such as:

entitySys.priority=MATLAB code

The event calendar includes event types such as:

• Entity generation
• Entity forwarding
• Entity destruction
• Timer
• Service completion

The event calendar sorts events based on times and associated entity priorities as
outlined here:

1 The event that has the earliest time executes first.
2 If two entities have events occurring at the same time, the event with the entity of

higher priority occurs first.
3 If both entities have the same priority, it is undefined which event is served first. To

get deterministic order, change one of the entity priorities.

For example, assume a forward event associated with an entity that exits block A and
enters block B. The priority of this event is the priority of the entity being forwarded.
If there are two entities trying to depart a block at the same time, the entity with the
higher priority departs first.

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity
Replicator | Entity Server | Entity Terminator | MATLAB Discrete Event
System | Multicast Receive Queue | Resource Acquirer

6 Learning More About SimEvents Software

6-4

Related Examples
• “Sort by Priority” on page 2-4

 Livelock Prevention

6-5

Livelock Prevention

Large Finite Numbers of Simultaneous Events

Simultaneous events are events that occur at the same simulation clock time. If your
simulation creates an large number of simultaneous events, this number might be an
indication of an unwanted livelock situation. In this situation, a block returns to the
same state infinitely often at the same time instant. SimEvents software prevents
livelock with these limits:

• SimEvents software limits the maximum number of simultaneous events per block to
5,000.

• SimEvents software limits the maximum number of simultaneous events per model to
100,000.

More About
• “Information About Race Conditions and Random Times”

6 Learning More About SimEvents Software

6-6

Storage and Nonstorage Blocks

In this section...

“Storage Blocks” on page 6-6
“Nonstorage Blocks” on page 6-6

Storage Blocks

These blocks are capable of holding an entity:

• Entity Generator

• Entity Queue

• Multicast Receive Queue

• Entity Server

• Entity Terminator

• Discrete Event Chart

• MATLAB Discrete Event System

• Entity Replicator

• Resource Acquirer

Nonstorage Blocks

These blocks permit an entity arrival but must output or destroy the entity at the same
value of the simulation clock:

• Entity Input Switch
• Entity Output Switch
• Entity Multicast
• Entity Gate
• Composite Entity Creator
• Composite Entity Splitter
• Resource Releaser
• Resource Pool

 Storage and Nonstorage Blocks

6-7

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event
Chart | Entity Gate | Entity Generator | Entity Input Switch | Entity
Multicast | Entity Output Switch | Entity Queue | Entity Replicator
| Entity Server | Entity Terminator | MATLAB Discrete Event System |
Multicast Receive Queue | Resource Acquirer | Resource Pool | Resource
Releaser

7

Working with Simulink

• “Exchange Data Between SimEvents and Simulink” on page 7-2
• “Time-Based Signals and SimEvents Block Transitions” on page 7-3
• “Save Simulation Data” on page 7-4
• “Solvers for Discrete-Event Systems” on page 7-6
• “SimEvents Support for Simulink Subsystems” on page 7-9

7 Working with Simulink

7-2

Exchange Data Between SimEvents and Simulink

Use Simulink Function blocks in SimEvents models:

• To read or write attributes of entities.
• To send messages that trigger other events.
• To exchange data between event and time domain sections of a model.

Use the Message Send and Message Receive blocks to send and receive messages
between Simulink and SimEvents blocks.

See Also
Message Receive | Message Send | Simulink Function

Related Examples
• “Events and Event Actions” on page 1-4
• “Generate Entities When Events Occur” on page 1-7

More About
• “What Is an Event?”

 Time-Based Signals and SimEvents Block Transitions

7-3

Time-Based Signals and SimEvents Block Transitions

When Signals Transition

Time-based signals and SimEvents signals have different characteristics. Here are some
indications that a time-based signal will be automatically converted into a SimEvents
signal, or vice versa:

• You want to connect a time-based signal to an input port of a SimEvents block.
• You are using data from a SimEvents block to affect time-based dynamics.
• You want to perform a computation involving both time-based signals and SimEvents

output.

When the transition occurs, a capital E appears on the line.

More About
• “What Is an Entity?”

7 Working with Simulink

7-4

Save Simulation Data

In this section...

“Behavior of the To Workspace Block” on page 7-4
“Send Queue Length to the Workspace” on page 7-4
“Data Logging” on page 7-4

Behavior of the To Workspace Block

The To Workspace block writes event-based signals to the MATLAB workspace when
the simulation stops or pauses. One way to pause a running simulation is to select
Simulation > Pause.

Send Queue Length to the Workspace

The example shows one way to write the times and values of signals to the MATLAB
workspace. In this case, the signal is the n output from an Entity Queue block, which
indicates how many entities the queue holds.

You can use different time formats in the To Workspace block to display the data.

To record entities and their attributes passing along an entity line, consider connecting a
To Workspace block to that entity line.

Data Logging

You can log data from your SimEvents model using Simulink. For more information, see
“Save Runtime Data from Simulation”.

 Save Simulation Data

7-5

See Also
“Save Runtime Data from Simulation” | To Workspace

7 Working with Simulink

7-6

Solvers for Discrete-Event Systems

In this section...

“Variable-Step Solvers for Discrete-Event Systems” on page 7-6
“Fixed-Step Solvers for Discrete-Event Systems” on page 7-7

Depending on your configuration, you can use both variable-step and fixed-step solvers
with discrete-event systems. To choose solver settings for your model, navigate to the
Solver pane of the model Configuration Parameters dialog box.

When choosing a solver type for your model, use the following guidelines:

• If your model contains only event-based computation and excludes continuous and
discrete time-based computation, choose the variable-step, discrete solver. In this
case, if you select a variable-step continuous solver, the software detects that your
model does not contain any blocks with continuous states (Simulink blocks) and
automatically switches the solver to discrete (no continuous states). When
the software makes this change, it notifies you with a message in the MATLAB
command window.

• If your discrete-event system is within a Simulink model that also contains time-
based modeling, choose either a variable-step or fixed-step solver, depending on your
simulation requirements. For each solver type, the following sections describe the
behavior of discrete-event systems when contained within such models.

Variable-Step Solvers for Discrete-Event Systems

If your discrete-event system is within a Simulink model that contains time-based
modeling, and you choose a variable-step solver for the model, the Simulink solver has a
major time step each time the discrete-event system needs to process events.

The following graphic illustrates the behavior of the variable-step solver when used with
a discrete-event system contained within a Simulink model.

 Solvers for Discrete-Event Systems

7-7

Fixed-Step Solvers for Discrete-Event Systems

If you have a discrete-event system within a Simulink model that includes time-based
modeling, you can choose a fixed-step solver for the model.

When you use a fixed-step solver, the simulation still executes events in the discrete-
event system at the times at which they occur. However, these events do not cause the
Simulink solver to have sample hits at those times. The software insulates the discrete-
event system from the time-based portions of the Simulink model.

The following graphic illustrates the behavior of the fixed-step solver when used with a
discrete-event system.

7 Working with Simulink

7-8

More About
• “Solvers”

 SimEvents Support for Simulink Subsystems

7-9

SimEvents Support for Simulink Subsystems

You can use SimEvents blocks (discrete-event blocks) without restriction in Simulink
Virtual Subsystems, and in Simulink® Nonvirtual Subsystems, observing some specific
guidelines.

For more information about Simulink subsystems, see “Systems and Subsystems”.

Discrete-Event Blocks in Virtual Subsystems

You can use discrete-event blocks without restriction in a virtual subsystem.

Discrete-Event Blocks in Nonvirtual Subsystems

For more information about atomic subsystems, see Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse Subsystem.

When you use discrete-event blocks in an atomic subsystem, follow these guidelines:

• The entire discrete-event subsystem, which includes all discrete-event blocks, must
reside entirely within the atomic subsystem. You cannot route entities into, or out of,
the atomic subsystem.

• If you want to connect two or more atomic subsystems that contain discrete-event
blocks, each atomic subsystem must meet all the preceding conditions.

Discrete-Event Blocks in Variant Subsystems

You can use discrete-event blocks in a variant subsystem. The software permits both
entities and time-based signals to enter and depart a virtual variant.

However, if you use an atomic subsystem as a variant, or within a variant, then that
atomic subsystem must obey the rules for using discrete-event blocks in nonvirtual
subsystems. These rules are described in “Discrete-Event Blocks in Nonvirtual
Subsystems” on page 7-9. An atomic subsystem is the only type of nonvirtual
subsystem that can contain discrete-event blocks, even when the nonvirtual subsystem is
contained within a variant subsystem.

7 Working with Simulink

7-10

Variant System Support

The SimEvents software does not support the selection of the Analyze all choices
during update diagram and generate preprocessor conditionals check box for
these blocks:

• Variant Subsystem

• Variant Sink

• Variant Source

See Also
Atomic Subsystem | CodeReuse Subsystem | Nonvirtual Subsystem |
Subsystem | Variant Source | Variant Sink | Variant Subsystem

More About
• “Systems and Subsystems”

8

Build Discrete-Event Systems Using
Charts

• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3
• “Event Triggering in Discrete-Event Charts” on page 8-5

8 Build Discrete-Event Systems Using Charts

8-2

Discrete-Event Systems Created with Stateflow Charts

Why Use the Discrete Event Chart

A Stateflow discrete-event chart can receive, process, and send SimEvents entities. Using
Stateflow discrete-event charts to create SimEvents systems lets you take advantage of:

• Graphical state transition and MATLAB action language used in Stateflow software
• Precise timing for temporal events arrival
• Triggering on message
• Dynamic event scheduling

Note: With SimEvents and its required software, you can view, edit, and simulate your
Discrete Event Chart custom block within a SimEvents example model. However, to
save the model you must have a Stateflow license.

For new models, without a Stateflow license, you can view and edit the model, but cannot
simulate or save it.

The entities you use with discrete-event charts must be bus objects.

See Also
Discrete Event Chart

Related Examples
• “Specify Chart Properties”

More About
• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3
• “Event Triggering in Discrete-Event Charts” on page 8-5

 How Discrete-Event Charts Differ from Stateflow Charts

8-3

How Discrete-Event Charts Differ from Stateflow Charts

In this section...

“Discrete Event Chart Properties” on page 8-3
“Define Message (Entity) Input and Output” on page 8-4
“Define Local Messages” on page 8-4
“Specify Message Properties” on page 8-4

Discrete Event Chart Properties

Discrete event chart properties allow you to specify how your chart interfaces with the
Simulink model.

Set Properties for a Chart

To specify properties for a single chart:

1 Double-click a chart.
2 Right-click an open area of the chart and select Properties.

All charts provide general and documentation properties.
3 Observe that the chart allows the configuration of only these properties on the

General tab. It also supports the Fixed-point properties and Documentation
tabs.

• Name
• Machine
• Saturate on integer overflow
• Create data for monitoring
• Lock Editor

Notes:

• SimEvents software supports only MATLAB action language
• SimEvents always supports variable-size arrays

8 Build Discrete-Event Systems Using Charts

8-4

Define Message (Entity) Input and Output

A discrete-event chart uses SimEvents entities the same way that Stateflow software
uses messages. As with Stateflow charts, you can add message (entity) input and output
using the Stateflow Editor or Model Explorer. Based on the desired scope, select one of
the following options:

Scope Menu Option

Input Message (Entity) Input from Simulink
Output Message (Entity) Output from

Simulink

Define Local Messages

As with Stateflow charts, you can define local messages for the discrete-event chart using
the Stateflow Editor or Model Explorer. To add a local message for the discrete-event
chart, select Chart > Add Other Elements > Local Message (Entity)....

Specify Message Properties

Discrete-event charts have this additional property for output messages and local
messages:

Message Input Port
Properties

Description

Priority If two message events occur at the same time, to decide which
to process first, the discrete-event chart uses this priority. A
smaller numeric value indicates a higher priority.

See Also
Discrete Event Chart

More About
• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2
• “Event Triggering in Discrete-Event Charts” on page 8-5

 Event Triggering in Discrete-Event Charts

8-5

Event Triggering in Discrete-Event Charts
In this section...

“Event Triggering” on page 8-5
“Message Triggering” on page 8-5
“Temporal Triggering” on page 8-5

Event Triggering

SimEvents discrete-event system charts support these events in the chart:

• Message event
• Temporal event
• Local event
• enter, exit, on, change

SimEvents discrete-event system charts do not support these events in the chart:

• Conditions without event
• during, tick
• Event input from Simulink
• Event output to Simulink

Message Triggering

When a message arrives at a message input or local queue, the discrete-event chart
responds to the message as follows:

• If the discrete-event chart is in a state of waiting for a message, the discrete-event
chart wakes up and makes possible transitions. The chart immediately wakes up in
order of message priority, processing the message with the highest priority first.

• If the discrete-event chart does not need to respond to the arriving message, the
discrete-event chart does not wake up and the message is queued.

Temporal Triggering

In a discrete-event chart, you can use both event-based and absolute time-based temporal
logic operators. When using absolute time-based temporal logic operators, the SimEvents

8 Build Discrete-Event Systems Using Charts

8-6

software honors the specified time delay value exactly. For example, the activation of
the temporal logic 'after(3,sec)' causes the chart to wake up after three seconds of
simulation clock time.

When using absolute-time temporal logic operators, observe these differences from the
Stateflow environment.

Operator Description

after You can use as event notation in both state
actions and transitions.

before When you use as event notation of a
transition, you cannot use additional
condition notations on this transition.
You can apply a connective junction to
check additional conditions, as long as the
connective junction has one unconditional
transition.

In conditional notation, the software supports both after and before.

See Also
Discrete Event Chart

More About
• “Discrete-Event Systems Created with Stateflow Charts” on page 8-2

 Event Triggering in Discrete-Event Charts

8-7

• “How Discrete-Event Charts Differ from Stateflow Charts” on page 8-3

9

Build Discrete-Event Systems Using
System Objects

• “Discrete-Event Systems Created with a System Object” on page 9-2
• “Use a MATLAB Discrete-Event System Block” on page 9-5
• “Implement a Discrete-Event System Object” on page 9-7
• “Custom Entity Types, Ports, and Storage” on page 9-10
• “Work with Events” on page 9-13

9 Build Discrete-Event Systems Using System Objects

9-2

Discrete-Event Systems Created with a System Object

In this section...

“Why Use the MATLAB Discrete-Event System Block” on page 9-2
“Discrete-Event System Objects” on page 9-3
“MATLAB Discrete-Event System And System Objects Examples” on page 9-3

Why Use the MATLAB Discrete-Event System Block

System objects let you implement custom event-driven entity-flow systems using the
MATLAB language. The MATLAB Discrete-Event System block enables you to use
System objects to create this custom block for SimEvents models. You can author such
discrete-event systems via a set of MATLAB methods.

You can create a custom discrete-event system that:

• Contains multiple entity storage elements, with each storage element containing
multiple SimEvents entities, and configure it to sort entities in a particular order.

• Has an entity or a storage element that can schedule and execute multiple types
of events. These events can model activities such as entity creation, consumption,
search, transmission (send/receive), and temporal delay.

• Can accept entity/signal as input/output, produce entity and signal as outputs, and
support both built-in data types and structured/bus data types.

The MATLAB Discrete-Event System block is similar to the MATLAB System block
with the following exceptions:

• The resulting System object™ is an instantiation of the matlab.DiscreteEventSystem
class rather than the matlab.System class.

• The matlab.DiscreteEventSystem has its own set of System object
methods particular to discrete-event systems. For a complete list, see
matlab.DiscreteEventSystem. Use these methods to define static properties or define
the behavior of objects.

• The matlab.DiscreteEventSystem also inherits a subset of the MATLAB System
methods. For a complete list if this subset, see matlab.DiscreteEventSystem.

• The MATLAB Discrete-Event System block supports only Interpreted
execution mode. There is no option to select another simulation mode.

 Discrete-Event Systems Created with a System Object

9-3

Discrete-Event System Objects

Before you use a MATLAB Discrete-Event System block, you must have a discrete-
event System object to associate with the block. A System object is a specialized
MATLAB class. Discrete-event system objects are designed specifically for implementing
and simulating dynamic systems with inputs that change upon discrete instances of
events.

For more information on creating discrete-event System objects, see “Implement a
Discrete-Event System Object” on page 9-7.

System objects exist in other MATLAB products. MATLAB Discrete-Event System
block supports only the System objects written in the MATLAB language.

MATLAB Discrete-Event System And System Objects Examples

For examples of MATLAB Discrete-Event System and System objects, SimEvents
Examples in the SimEvents Help browser.

In addition, in the Other category of the SimEvents library, double-click the Design
Patterns block. The MATLAB Discrete-Event System category contains these
discrete-event system design patterns:

Example Application

Custom Generator Implement a more complicated entity generator.
Custom Server Implement a more complicated entity server.
Selection Queue Select a specific entity to output from a queue.

See Also
matlab.DiscreteEventSystem | matlab.System

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-5

More About
• “System Object Integration”

9 Build Discrete-Event Systems Using System Objects

9-4

• “Implement a Discrete-Event System Object” on page 9-7
• “Custom Entity Types, Ports, and Storage” on page 9-10
• “Work with Events” on page 9-13

 Use a MATLAB Discrete-Event System Block

9-5

Use a MATLAB Discrete-Event System Block

Implement a block and assign a System object to it. You can then explore the block to see
the effect.

1 Create a model and add the MATLAB Discrete-Event System block from the
SimEvents library.

2 In the block dialog box, from the New list, select Basic if you want to create a
System object from a template. Modify the template according to your needs and
save the System object.

3 If the System object already exists, enter its name in the Discrete-event System
object name. Click the list arrow. If valid System objects exist in the current folder,
the names appear in the list.

The MATLAB Discrete-Event System block icon and port labels update to the
icons and labels of the corresponding System object. For example, suppose that you
selected a System object named desCustomServer in your current folder. The block
updates as shown in the figure:

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “System Object Integration”
• “Discrete-Event Systems Created with a System Object” on page 9-2

9 Build Discrete-Event Systems Using System Objects

9-6

• “Implement a Discrete-Event System Object” on page 9-7
• “Custom Entity Types, Ports, and Storage” on page 9-10
• “Work with Events” on page 9-13

 Implement a Discrete-Event System Object

9-7

Implement a Discrete-Event System Object

The matlab.DiscreteEventSystem provides methods that let you work with these
elements of a discrete-event system:

• Static properties of the object entity types, ports, and storage

• getEntityPortsImpl

• getEntityStorageImpl

• getEntityTypesImpl

• Event initialization

• setupEventsImpl

• Runtime behavior of the object

• blockedImpl

• destroyImpl

• entryImpl

• exitImpl

• generateImpl

• iterateImpl

• timerImpl

While implementing these methods, define entity type, entity storage, create, schedule,
and cancel events. Use these functions:

• Define entity storage

• queueFIFO

• queueLIFO

• queuePriority

• Create and schedule events

• eventGenerate

• eventIterate

• eventTimer

9 Build Discrete-Event Systems Using System Objects

9-8

• eventForward

• eventDestroy

• Cancel events

• cancelGenerate

• cancelIterate

• cancelTimer

• cancelForward

• cancelDestroy

• Define entity type

• entityType

See Also
matlab.DiscreteEventSystem | matlab.System |
matlab.DiscreteEventSystem.blockedImpl | matlab.DiscreteEventSystem.cancelDestroy
| matlab.DiscreteEventSystem.cancelForward |
matlab.DiscreteEventSystem.cancelGenerate |
matlab.DiscreteEventSystem.cancelIterate | matlab.DiscreteEventSystem.cancelTimer
| matlab.DiscreteEventSystem.destroyImpl | matlab.DiscreteEventSystem.entityType
| matlab.DiscreteEventSystem.entryImpl | matlab.DiscreteEventSystem.eventDestroy
| matlab.DiscreteEventSystem.eventForward |
matlab.DiscreteEventSystem.eventGenerate |
matlab.DiscreteEventSystem.eventIterate | matlab.DiscreteEventSystem.eventTimer
| matlab.DiscreteEventSystem.exitImpl | matlab.DiscreteEventSystem.generateImpl
| matlab.DiscreteEventSystem.getEntityPortsImpl |
matlab.DiscreteEventSystem.getEntityStorageImpl |
matlab.DiscreteEventSystem.getEntityTypesImpl |
matlab.DiscreteEventSystem.iterateImpl | matlab.DiscreteEventSystem.queueFIFO |
matlab.DiscreteEventSystem.queueLIFO | matlab.DiscreteEventSystem.queuePriority
| matlab.DiscreteEventSystem.queueSysPriority
| matlab.DiscreteEventSystem.setupEventsImpl |
matlab.DiscreteEventSystem.timerImpl

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-5

 Implement a Discrete-Event System Object

9-9

More About
• “System Object Integration”
• “Discrete-Event Systems Created with a System Object” on page 9-2
• “Custom Entity Types, Ports, and Storage” on page 9-10
• “Work with Events” on page 9-13

9 Build Discrete-Event Systems Using System Objects

9-10

Custom Entity Types, Ports, and Storage

In this section...

“Entity Types” on page 9-10
“Custom Entity Ports” on page 9-11
“Custom Entity Storage” on page 9-11

Entity Types

In a discrete-event system, an entity type defines a class of entities that share a common
set of data specifications and run-time methods. Examples of data specifications include
dimensions, data type, and complexity. Consider these guidelines when defining custom
entity types using the getEntityTypesImpl method:

• You can specify multiple entity types in one discrete-event system. Each type must
have a unique name.

• An entity storage element, input port, and output port must specify the entity type it
works with.

• Specify or resolve common data specifications for an entity type. For example, an
input port and an output port with the same entity type must have the same data
type.

• When forwarding an entity, the data specifications of source and destination must be
same in these instances:

• From input port to storage
• Between storage elements
• From a storage element to output port

For a discrete-event system with multiple entity types, each entity type shares a common
set of event action methods. When naming these methods, use this convention:

entitytypeActionImpl

For example, if your discrete-event system has two entity types, car and truck, use
method names such as:

carEntryImpl

trucEntryImpl

 Custom Entity Types, Ports, and Storage

9-11

For discrete-event systems with one entity type, you can still use this convention, or just
use the convention actionImpl, such as

entryImpl

Custom Entity Ports

A MATLAB discrete-event system supports variable number of input and output
ports using the getNumInputsImpl and getNumOutputsImpl methods. You can
also specify which ports are entity ports and the entity types for these ports. Use the
getEntityPortsImpl method to specify these port properties.

Custom Entity Storage

A MATLAB discrete-event system can contain multiple entity storage elements. Use
the getEntityStorageImpl method to specify storage elements. An entity storage is a
random-access container with these properties:

• Entity type

Entity type this storage is handling.
• Capacity

Maximum number of entities that the storage can contain.
• Storage type

Criteria to sort storage entities (FIFO, LIFO, and priority).
• Key name

Any attribute name used as key name for sorting (such as for priority queues). This
property is applicable only when the storage type is priority.

• Sorting direction

Sorting order, such as ascending or descending for priority queues. This property is
applicable only when the storage type is priority.

See Also
matlab.DiscreteEventSystem | matlab.System |
matlab.DiscreteEventSystem.getEntityPortsImpl |

9 Build Discrete-Event Systems Using System Objects

9-12

matlab.DiscreteEventSystem.getEntityStorageImpl |
matlab.DiscreteEventSystem.getEntityTypesImpl |
matlab.DiscreteEventSystem.queueFIFO | matlab.DiscreteEventSystem.queueLIFO
| matlab.DiscreteEventSystem.queuePriority |
matlab.DiscreteEventSystem.queueSysPriority

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-5

More About
• “System Object Integration”
• “Discrete-Event Systems Created with a System Object” on page 9-2
• “Implement a Discrete-Event System Object” on page 9-7
• “Work with Events” on page 9-13

 Work with Events

9-13

Work with Events

In this section...

“Event Types” on page 9-13
“Event Actions” on page 9-14
“Initialization Events” on page 9-15
“Cancellation of Previously Scheduled Events” on page 9-15
“Additional Notes” on page 9-15

Event Types

A MATLAB discrete-event system can have the following types of events:

• Storage events — Schedule these events on a storage element. The actor is a storage
element.

• Generate

Create a new entity inside a storage element.
• Iterate

Iterate and process each entity of a storage element.
• Entity events — Schedule these events on an entity. Actor is an entity.

• Timer

Delay an entity.
• Forward

Move an entity from its current storage to another storage or output port.
• Destroy

Destroy the existing entity of a storage element.

You can:

• Schedule events

9 Build Discrete-Event Systems Using System Objects

9-14

• Define event actions in response to events
• Initialize events
• Cancel events

Event Actions

When an event occurs, a discrete-event system responds to it by invoking a corresponding
action. Implement these actions as System object methods. This table lists each action
method and the triggering event.

Action Triggering Event Description

generateImpl Generate Called after a new entity is created inside a
storage element.

iterateImpl Iterate Upon execution of an iterate event, the
discrete-event system calls this method
for each entity, starting from the front of
the storage, to the back. You can stop the
iteration before reaching the last entity.
If the entity order must change, the order
changes after the entire iteration completes.

timerImpl Timer Called when a timer of an entity expires
(completes).

entryImpl Forward When an entity is forwarded from storage A
to storage B, the discrete-event system first
calls exitImpl of A, then entryImpl of B.

exitImpl Forward When an entity is forwarded from storage A
to storage B, the discrete-event system first
calls exitImpl of A, then entryImpl of B.

blockedImpl Forward Upon execution of a forward event, if entity
cannot leave due to blocking, the discrete-
event system calls the blockedImpl action
method.

destroyImpl Destroy The discrete-event system calls this method
before an existing entity is destroyed and
removed from storage.

 Work with Events

9-15

Initialization Events

Use the setupEventsImpl method to schedule initial events of a discrete-event system.
You can schedule only storage events using this method. This method does not have a
specific entity type name.

Cancellation of Previously Scheduled Events

Use the cancel* methods to cancel previously scheduled events of a discrete-event
system.

Additional Notes

• Forward events

If a forward event fails because of blocking, the forward event remains active. When
space becomes available, the discrete-event system reschedules the forward event for
immediate execution

• Tagging events

You can schedule multiple events of the same type for the same actor. When using
multiple events of the same type, use tags to distinguish between the events. For
example, an entity can have multiple timers with distinct tags. When one timer
expires, you can use the tag argument of the timerImpl method to differentiate
which timer it is.

If you schedule two events with the same tag on the same actor, the later event
replaces the first event. If you schedule two events with different tags, the discrete-
event system calls them separately.

See Also
matlab.DiscreteEventSystem | matlab.System |
matlab.DiscreteEventSystem.blockedImpl | matlab.DiscreteEventSystem.cancelDestroy
| matlab.DiscreteEventSystem.cancelForward
| matlab.DiscreteEventSystem.cancelGenerate
| matlab.DiscreteEventSystem.cancelIterate |
matlab.DiscreteEventSystem.cancelTimer | matlab.DiscreteEventSystem.destroyImpl
| matlab.DiscreteEventSystem.entryImpl | matlab.DiscreteEventSystem.eventDestroy
| matlab.DiscreteEventSystem.eventForward |

9 Build Discrete-Event Systems Using System Objects

9-16

matlab.DiscreteEventSystem.eventGenerate | matlab.DiscreteEventSystem.eventIterate
| matlab.DiscreteEventSystem.eventTimer | matlab.DiscreteEventSystem.exitImpl |
matlab.DiscreteEventSystem.generateImpl | matlab.DiscreteEventSystem.iterateImpl
| matlab.DiscreteEventSystem.setupEventsImpl |
matlab.DiscreteEventSystem.timerImpl

Related Examples
• “Use a MATLAB Discrete-Event System Block” on page 9-5

More About
• “System Object Integration”
• “Discrete-Event Systems Created with a System Object” on page 9-2
• “Implement a Discrete-Event System Object” on page 9-7
• “Custom Entity Types, Ports, and Storage” on page 9-10

10

Custom Visualization

• “Interface for Custom Visualization” on page 10-2
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

10 Custom Visualization

10-2

Interface for Custom Visualization

In this section...

“SimulationObserver Class” on page 10-2
“Custom Visualization Workflow” on page 10-2

SimulationObserver Class

To create an observer, create a class that derives from the
simevents.SimulationObserver object. You can use observers to implement
animators to visualize model simulation, or debuggers.

• To help understand queue impact, visualize entities moving through the model during
simulation,

• Develop presentation tools showing model simulation via an application-oriented
interface, such as restaurant queue activity.

• Debug and examine entity activity.
• Examine queue contents.

The simevents.SimulationObserver object provides methods that let you:

• Create observer or animation objects.
• Identify model blocks for notification of run-time events.
• Interact with the event calendar.
• Perform activities when a model pauses, continues after pausing, and terminates.

SimEvents models call these functions during model simulation.

Custom Visualization Workflow

1 Create an application file.

a Define a class that inherits from the simevents.SimulationObserver class.
b Create an observer object that derives from this class.
c From the simevents.SimulationObserver methods, implement the

functions you want for your application. This application comprises your
observer.

 Interface for Custom Visualization

10-3

2 Open the model.
3 Create an instance of your class.
4 Run the model.

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

10 Custom Visualization

10-4

Create an Application

You can use these methods in your derived class implementation of
simevents.SimulationObserver.

Action Method

Specify behavior when simulation
starts.

simStarted

Specify behavior when simulation
pauses.

simPaused

Specify behavior when simulation
resumes.

simResumed

Define observer behavior when
simulation is terminating.

simTerminating

Specify list of blocks to be notified
of entity entry and exit events.

getBlocksToNotify

Specify whether you want
notification for all events in the
event calendar.

notifyEventCalendarEvents

Specify behavior after an entity
enters a block that has entity
storage.

postEntry

Specify behavior before an entity
exits a block with entity storage.

preExit

Specify behavior before execution
of an event.

preExecute

Add block to list of blocks to be
notified.

addBlockNotification

Remove block from list of blocks
being notified.

removeBlockNotification

Get handles to event calendars. getEventCalendars

Get list of blocks that store
entities.

getAllBlockWithStorages

 Create an Application

10-5

Action Method

Return block handle for a given
block path.

getHandleToBlock

Return storage handles of
specified block.

getHandlesToBlockStorages

1 In the MATLAB Command Window, select New > Class.
2 In the first line of the file, inherit from the simevents.SimulationObserver

class. For example:

classdef seExampleRestaurantAnimator < simevents.SimulationObserver

seExampleRestaurantAnimator is the name of the new observer object.
3 In the properties section, enter the properties for your application.
4 In the methods section, implement the functions for your application.
5 To construct the observer object, enter a line like the following in the methods

section of the file:

function this = seExampleRestaurantAnimator

 % Constructor

 modelname = 'seExampleCustomVisualization';

 this@simevents.SimulationObserver(modelname);

 this.mModel = modelname;

 end

The matlabroot\toolbox\simevents\examples folder contains this application
example, seExampleRestaurantAnimator.m. This example uses an observer object to
implement an animator for the seExampleCustomVisualization model.

For more information, see Using Custom Visualization for Entities in the SimEvents
Examples tab.

See Also
simevents.SimulationObserver

Related Examples
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8

10 Custom Visualization

10-6

• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

 Use the Observer to Monitor the Model

10-7

Use the Observer to Monitor the Model

1 Open the model to observe.
2 At the MATLAB command prompt, to enable the animator for the model:

>> obj=seExampleRestaurantAnimator;

3 Simulate the model.

When the model starts, the animator is displayed in a figure window. As the model
runs, it makes calls into your application to see if you have implemented one of the
predefined set of functions.

Note: As a result of the instrumentation to visualize the simulation, the simulation is
slower than without the instrumentation.

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Stop Simulation and Disconnect the Model” on page 10-8
• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

10 Custom Visualization

10-8

Stop Simulation and Disconnect the Model

1 Stop the simulation.
2 At the MATLAB command prompt, clear the animator from the model. For example:

clear obj;

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Custom Visualization Examples” on page 10-9

More About
• “Interface for Custom Visualization” on page 10-2

 Custom Visualization Examples

10-9

Custom Visualization Examples

In this section...

“Structure of Example Model” on page 10-9
“Visualize Entities” on page 10-9

The Using Custom Visualization for Entities example visualizes a
restaurant layout with customer entities entering, dining, and leaving. It uses
seExampleCustomVisualization to model a restaurant. To observe the visualization,
start the model and the animator.

Structure of Example Model

The seExampleCustomVisualization model has these major components:

• The Entity Generator block (Patron Enter) generates entities representing
customer entities. Each customer has a TimeToDine amount of time to dine.

• These customer entities enter a waiting area, where a Resource Acquirer block
acquires a table for the customer.

• The Resource Pool block contains 10 table resources.
• When a table entity is available for a waiting customer entity, the Entity Server

block serves the customer for a TimeToDine amount of time.
• When a customer entity is done dining, the Resource Releaser block releases the

table resource back to the resource pool.
• The customer entity leaves the restaurant through the Entity Terminator block

(Patron Leave).

Visualize Entities

The seExampleRestaurantAnimator application animates the diners entering, dining,
and leaving the restaurant. The animator application draws a different colored dot for
each customer. As customers move through the restaurant, the application animates the
motion of the dots.

10 Custom Visualization

10-10

See Also
simevents.SimulationObserver

Related Examples
• “Create an Application” on page 10-4
• “Use the Observer to Monitor the Model” on page 10-7
• “Stop Simulation and Disconnect the Model” on page 10-8

More About
• “Interface for Custom Visualization” on page 10-2

